SociologyZone
подробно о социологии

Методы экстраполяции в демографии
Страница 2

Материалы и статьи » Демографическое прогнозирование » Методы экстраполяции в демографии

Идея логистической функции была впервые высказана А. Кетле в 1835 г. и позже (в 1838 г.) аналитически выведена бельгийским математиком Пьером Франсуа Ферхюлстом (Verhulst) (1804-1849). Ферхюлст пытался найти кривую, описывающую ситуацию автонасыщения, которая предполагает существование некоторой предельной для данных конкретных условий численности населения. По мере приближения к этой предельной численности рост населения замедляется вследствие действия неких сил сопротивления, мешающих этому росту. Поиск такого рода функции был необходим А. Кетле для опровержения так называемого закона народонаселения Т.Р. Мальтуса. Этот закон, исходит из того, что не ограничиваемый ничем рост населения происходит в геометрической прогрессии (по экспоненциальной функции). По словам. Кетле, в действительности экспоненциальный рост не имеет места из-за того, что сопротивление или сумма препятствий его увеличению, при прочих равных условиях, действует как квадрат скорости, с какой население имеет тенденцию роста. Развивая эту идею, Ферхюлст и вывел указанную выше функцию.

Затем логистическая кривая была надолго забыта и вновь выведена американскими биологами Р. Пирлом (1879-1940) и Л. Ридомв. Они применили логистическую кривую для прогнозирования численности населения США вид:

Pt = (6)

Как и рассмотренные выше линейная и экспоненциальная функции, логистическая функция не может отражать динамику реальных населений в сколько-нибудь длительной перспективе. Она может использоваться, главным образом, для прогнозирования численности небольших территорий на краткие периоды времени. Условием качественности прогноза и в данном случае является контроль с помощью данных о численности населения всей страны. Перспективные расчеты с помощью логистической функции требуют знания численности населения на три равноудаленных момента времени (или на другое кратное трем их число) или задания численности населения на два равноудаленных момента времени и нижней и верхней асимптот. При этом, если нижняя асимптота может быть принята за О, для определения верхней асимптоты не существует никакой разумной процедуры, которая давала бы перспективное значение максимальной численности населения[13, c 86].

Тем не менее, логистическая функция может использоваться для прогнозирования небольших территорий, если общая численность населения страны используется как контрольная величина для суммарного населения всех регионов. В этом случае вместо расчета численности населения региона прогнозируются доли населения каждого региона в общей численности населения страны. Поскольку доля может изменяться только в пределах от 0 до 1, эти величины могут использоваться как нижняя и верхняя асимптоты логистической кривой.

Зная прогнозные значения этих долей и прогнозную величину численности населения всей страны, можно определить и будущую численность населения каждого из регионов.

Хотя не существует и не может существовать никакого универсального математического закона, описывающего динамику численности населения, тем не менее, в демографии известны многочисленные попытки найти подобный закон. В частности, весьма популярны попытки вывести гиперболический закон роста населения Земли. В качестве примера подобных попыток можно указать на гиперболический закон роста численности населения Земли.

В качестве примера применения методов экстраполяции рассмотрим расчет общей численности населения на основании уравнения экспоненциальной кривой[14, c 55].

Lt = Lo * e p*t (7)

где - численность населения в прогнозный период;

Lo - численность населения в период, предшествующий прогнозному;

e p*t - основные натурального логарифма (2,7182);

t- период, на который разрабатывается прогноз;

p - коэффициент естественного прироста населения, выраженный в

долях единиц, рассчитанный по формуле (6) :

Р = (8)

где ЧР - число родившихся за период;

ЧУ – число умерших за период;

ЧН – средняя численность населения за период.

Широкое применение методов экстраполяции объясняется тем, что данные процессы в большинстве случаев достаточно инерционны в своем развитии. Методы экстраполяции применяются не только для оценки будущей численности населения, но и для расчета характеристик движения населения (например, коэффициентов рождаемости, смертности, миграции). Общий недостаток построенных с помощью методов экстраполяции прогнозов – это то, что они опираются на средние тенденции динамики населения, зачастую игнорируя особенности отдельных половозрастных групп.

Страницы: 1 2 


Другое по теме:

Программа мер по обеспечению выпускной квалификационной работы. Социальная значимость и экономическое обоснование внедрения разработанных мероприятий
В октябре 1999 года, по данным ООН, на Земле родился 6-миллиардный житель и, несмотря на то, что ежегодный прирост сокращается, ожидается, что к 2100 году население Земли достигнет 10-11 миллиардов человек. На этом фоне Россия – одна из н ...

Предпосылки идеологии. Биосоциальные основы
Государственная идеология, обеспечивая стабильность, формирует у граждан чувство удовлетворенности, убеждение в преимуществах существующей формы правления и организации общества. Идеология воспитывает патриотизм, готовность, если потребуе ...

Понятие социальной политики
Социальная работа вошла в число видов социальной деятельности, направленной на оказание помощи людям, содействия им в их затруднениях. Виды такой социальной деятельности столь же стары, как само человеческое общество. Индивиды не могли со ...